Photodissociation of aniline N-H bonds in clusters of different nature.

نویسندگان

  • Viktoriya Poterya
  • Dana Nachtigallová
  • Jozef Lengyel
  • Michal Fárník
چکیده

We investigated the solvent effects on the N-H bond photodisociation dynamics of aniline (PhNH2) in clusters using velocity map imaging (VMI). The VMI experiment was accompanied by a time-of-flight mass spectrometry after electron ionization to reveal the cluster nature. The H-fragment images were recorded at 243 nm in various expansion regimes corresponding to different species: isolated molecules; small (PhNH2)N, N ≤ 3, clusters; larger (PhNH2)N, N ≥ 10; small mixed PhNH2·(H2O)N, N ≤ 10, clusters; and individual PhNH2 molecules deposited on large (H2O)N, N̄ = 430. The H-fragment kinetic energy distributions exhibit fast fragments around 0.8 eV (A) assigned previously to a direct dissociation along a repulsive πσ* state potential, and slow statistical fragments peaking near 0.2 eV (B). In the aniline clusters the contribution of fast fragments (A) decreases relatively to (B) with increasing cluster size. A similar effect is observed when aniline is solvated with water molecules. The experimental data are interpreted with ab initio calculations. Cluster structures were calculated with both N-H bonds of an aniline molecule participating in hydrogen bonding, as well as the ones with free N-H bonds. The latter ones yield preferentially the fast fragments as the isolated molecule. For N-H engaged in hydrogen bonding a barrier increased along the N-H coordinate on the dissociative πσ* state potential surface, and also the energy of πσ*/S0 conical intersection increased. Thus the fast dissociation channel was closed stabilizing the molecule in clusters. The population could be funnelled through other conical intersections into the hot ground state which decayed statistically, yielding the slow H-fragments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DFT-PBE, DFT-D, and MP2 Studies on the H2O•••HNH and HOH•••NH2 Hydrogen Bonds in Water-Aniline Complexes

DFT-GGA method of Perdew-Burke-Ernzerhof (PBE) is used with aug-cc-PVTZ, 6-311++G**, and Def2-TZVP large basis sets to study the hydrogen bond interactions between oxygen lone pair as a donor electron with hydrogen atom connected to the aniline’s nitrogen as an electron acceptor (H2O···HNH-Ph), and nitrogen lone pair with hydrogen of water molecule (Ph-H2N···HOH...

متن کامل

The Nature of Halogen Bonds in [N∙∙∙X∙∙∙N]+ Complexes: A Theoretical Study

     The effects of substituents on the symmetry and the nature of halogen bonds in [N∙∙∙X∙∙∙N]+-type systems are presented for the YC5H4N∙∙∙X∙∙∙NC5H5 (Y = NO2, CN, H, CH3, OCH3, OH, NH2, X = Cl, Br, I) complexes. Some structural parameters, energy data and electronic properties were explored with...

متن کامل

Adsorption of Strontium (II) on new ion-imprinted solid-phase support: determination, isotherms, thermodynamic and kinetic studies

An ion imprinted polymer (IIP) based on aniline-formaldehyde was synthesized and then modified with extra aniline as cross-linker in the presence and absence of Sr (II) as the template to produce ion imprinted poly(aniline-formaldehyde) (IIPAF) and non imprinted poly(aniline-formaldehyde) (NIPAF). The sorbent was characterized by Fourier Transform Infrared Spectroscopy and was used for solid ph...

متن کامل

Design and analysis of chain and network structures from organic derivatives of polyoxometalate clusters.

Polyoxometalate (POM) clusters derivatized with aniline groups exhibit distinct interactions with counterions and with each other. These interactions lead to the assembly of the clusters into chains and networks upon crystallization. Two cluster types were examined, [W(6)O(25)H(AsC(6)H(4)-4-NH(2))(2)](5-) and [Mo(12)O(46)(AsC(6)H(4)-4-NH(2))(4)](4-). The X-ray crystal structures were solved for...

متن کامل

2,4-Dichloro-N-(3,5-dimethyl­phen­yl)benzene­sulfonamide

In the crystal of the title compound, C(14)H(13)Cl(2)NO(2)S, the N-H bond in the C-SO(2)-NH-C segment is syn to one of the meta-methyl groups in the aniline benzene ring and anti to the other. Further, the conformation of the N-C bond in the C-SO(2)-NH-C segment is gauche with respect to the S=O bonds. The C-SO(2)-NH-C torsion angle is 54.9 (2)°. The sulfonyl and aniline benzene rings are tilte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 38  شماره 

صفحات  -

تاریخ انتشار 2015